AN ELECTROMAGNET WITH HALL EXCITATION
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In 1911 Corbino showed that if a disk with a current flowing to the axis is placed in a magnetic
field parallel to the axis of the disk, then due to the Hall emf the initially straight line of elec-
tric current is turned into a spiral, This leads to an increase in the length of the current line
and thus to an increase in the disk resistance, The change in the disk resistance in a magnetic
field was used in [1] to switch the current in the circuit of an inductive energy store. If the
electric current carriers move from the edge of the disk to the axis, the azimuthal Hall cur-
rent is accompanied by an increase in the magnetic field inside the disk compared with that
outside it [2]. The same processes occur in a hydromagnet [3-5], in which the radial flow of
a conducting liquid in an axial magnetic field is used to amplify a magnetic field. In the
papers mentioned earlier the transients which occur when the steady magnetic field is estab-
lished were not considered, To produce a magnetic field, and particularly for switching, the
switch-on time of the device is of considerable importance. Hence, in this paper we consider
the nonstationaryproblem of the amplification of a magnetic field, The amplification of the
field is obtained and the time taken for the stationary state to build up is found. Both quan-
tities depend exponentially on the magnetic Reynolds number, For a hydromagnet it is shown
that the steady-state magnetic field differs considerably from that obtained in [4, 5]. The dis-
agreement between the results is due to the fact that the boundary conditions in [4, 5] were
arbitrarily chosen,

§1. Wewill considera number of problems connected with the excitation of a Hall current which amplifies
the magnetic field applied to the device. Figure 1 shows an arrangement which leads to amplification of the
magnetic field in a plane geometry, The current I, flows in the conducting medium from the plane C; to A,
and from C, to A,. The magnetic field is perpendicular to the plane of Fig. 1. The Hall current which occurs
in the left part of the arrangement is closed by the same Hall current on the right. A sketch of the axisym-~
metrical case is shown in Fig, 2. Here the current I, is radial, while the Hall current is azimuthal. The prob-
lem reduces to solving the following set of equations:

rot B = p,j, rot E = —aB/8¢, § = o + (/en)lj x B, (1.1)
divj=0,

where we have used the usual notation for the quantities.
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The following initial and boundary conditions are of physical interest:

1. The circuit is connected to an external de source so that the current flows from the outer boundary
C to the inner boundary A. Initially the field B, is everywhere zero, At the instant t=0 a field Bz|Cc= By is
switched on on the outer boundary and then remains constant. On the boundary C the field is continuous, The
field in the cavity is uniform and depends only on time, The boundary condition on the inner surface A follows
from the first, second, and third equations of system (1.1):

rotBl, = poo(E + (t/en)lj X Bh4. (1.2)

This problem describes the operation of a current switch in the circuit of an inductive energy store., It
can be used to control a constant external magnetic field,

2. The field at the initial instant of time is everywhere equal to Bz =B;. At the instant of time t =0 the
current I is switched on and then remains constant, The boundary condition on the inner surface is {1.2) as
before, This formulation of the problem describes the operation of a system for amplifying a magnetic field
due to the operation of an external dc source.

3. Since it was assumed in {4, 5] that the field is zero on the outer boundary, we will specially consider
problem 2 with the condition Bzjc =0.

Henceforth the interaction between the current I, and its own magnetic field will be ignored, since this
interaction, when the current conducting leads are appropriately placed, leads merely to polarization of the
conducting medium along the z axis,

§2. Solutions oftheabove problems can be obtained by means of the Laplace transform {6]. Thus, prob-
lem 1 in the plane case has the solution
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where p; are the consecutive nontrivial roots of the equation

thY plc — a) = V' p/iaid + ag) — apl. (2.2)
The combination 2¢(c— a) =(c—a)yoj,/en, where j, is the current density flowing from C to A, is the ratio of
the field diffusion time into the thickness (c—a) to the time taken for the carriers to move from C to A, i.e.,
the magnetic Reynolds number Reyy,.

For the axisymmetrical case the solution of problem 1 has the form
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where I, Iy, and K, K;_; are Bessel functions of imaginary argument; the quantity 2v =u,0 joc/en=Rem as
before is the magnetic Reynolds number, and j, is the radial current density on the outer boundary.

The solutions of probiem 2 have a similar structure,

To analyze the steady state of a hydromagnet we will solve problem 3 in the plane case. For clarity we
will assume @ =0, or, which is the same thing, that the boundary A is impenetrable for the magnetic field:
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where p; are the roots of Eq. (2.2) for a=0. The solution of the axisymmetrical problem 3 will not be given
here because of its complexity.

§3. The structure of the solutions obtained for problems 1and2 have the same form: Each of them con-
tains a series which decays exponentially with time, and a term independent of the time, The solution of prob-
lem 3 does not have such a term.

Analysis of the solutions for small magnetic Reynolds numbers leads to the conclusion that the fields,
and the times taken for them to become established, are practically unchanged compared with the usual prob-
1ems of the diffusion of a field into a conductor.

The situation changes considerably for large magnetic Reynolds numbers (Rep, >1). In this case Eq.
(2.2) has an infinite set of negative roots pj < 0 and one root p~ a2, The terms of series (2.1) when p;j< 0 differ
slightly from the corresponding terms of the series in the usual problem of the diffusion of a field ignoring the
Hall effect, so that they disappear in a time on theorder of the time of free diffusion of the field into the speci-
men. Using this we can represent solution (2.1) for fairly long times in the form

B, ~ BoeREE(i—%) {’1 —e ;}1
where
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is the characteristic field buildup time. For simplicity, we have here used the approximation a/c<«1. This
time also represents the buildup of the field in problems 2 and 3 for plane geometry.

A similar situation occurs in the axisymmetrical problem. The expression under the integral in (2,3)
has a singular point [p|— 0 when Rey,— =, which also determines the rate of variation of the field inside the
device. Using the asymptotic expansion of the Bessel functions for large values of the index, we .can obtain
from (2.3)

B,~B,[%
(7)
where
u,0c? (c )Rem
TR S|~ .
Rey, e (3.2)
The stationary distribution of the field between the cylinders A and C in problems 1 and 2 has the form
VR
B,=B, (%) . (3.3)

for any magnetic Reynolds numbers,

The steady-state value of the magnetic field in problem 3 is zero, which follows from (2.4), while the
relaxation time when Rep, »1 is determined by relations (3.1) or (3.2) depending on the geometry.

Hence, we have shown that amplification of the magnetic field occurs if the field on the outer boundary
differs from zero. When the field on the outer boundary is zero no amplification occurs, and the relaxation
time is given by relations (8.,1) or (3.2) for Rey >>1.

§4. The solutions ofthe problems obtained in the previous sections can be applied to analyze the transient
in a hydromagnet if we make the substitution jo/ en =1, in the magnetic Reynolds number, where u, is the veloc-
ity of the normal flow of liquid on the outer boundary.

Thus, in the axisymmetrical problem, if the field on the outer boundary differs from zero, the field dis-
tribution in the hydromagnet is given by relation (3.3). If the field on the outer boundary is equal to zero, the
steady-state value of the field inside the hydromagnet will be zero, which differs from the results obtained
in [4, 5]. The time taken for the hydromagnet to reach the steady state is given by the same relations as in
the Corbino disk device.

§5. Inadditionto problems 1-3 we will consider the problem of the concentration of the magnetic field
when the flux through the hydromagnet remains constant, This condition was used in [4, 5].
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The outer boundary of the hydromagnet. is made of a good conductor, so that the diffusion of the field
through it during the contraction period can be neglected. The field in the hydromagnet before contraction is
Bz =B,. Using the condition for the conservation of the flux and the field distribution (3.3) we obtain

R Re_—2 ‘
B, =B, (-;-) ‘m (Rep—2)am

Re — Re —
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It can be seen from this equation that the maximum achievable field in the center of the hydromagnet under
flux~conservation conditions is Bz = Bo(c/a)2 as Reyy — =, If the field on the boundary is kept constant, the field
at the center of the hydromagnet is By = Bo(c/a)Rem; i.e., more effective amplification of the field occurs.

The author thanks E. I. Bichenkov and R, L, Rabinovich for useful discussions and advice.
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ELECTRIC FIELDS IN A SINGLE-TURN MAGNETIC
GENERATOR WITH A PARABOLIC TURN PROFILE

V.S, Fomenko UDC 538.4

1. To solve a number of problems in experimental physics, it is necessary to have available a wide
range of high-power electromagnetic energy [1]. One of the possible pulsed sources of electromagnetic en-
ergy with high specific energy capacity and power is the explosive-driven magnetic generator. Several types
of explosive-driven magnetic generators are known at the present time [2-5]. The variety of generators is due
to the need to satisfy contradictory requirements (e.g., such as a short operating time and a large initial in-
ductance, a large value of the generated current, and limited dimensions of the current circuit), which are
difficult to combine in a single generator.

In any type of explosive-driven magnetic generator when the condition dL(t)/dt >R(t) is satisfied, the
main increase in the generated current occurs at the end of the deformation of the electric circuit, I{t)~ L"i(t) .
n(t) (I, L, and R are the current, inductance, and total resistance of the generator). The efficiency of the op-
eration of the generator, or the value of the magnetic flux conservation coefficient 7, at this stage of the mag-
netic~cumulative process may be reduced due to electrical breakdowns occurring in the air which fills the com~
pression volume of the generator. The breakdown mechanism, accompanied by the cutting of part of the in-
ductance of the circuit, and the related loss in magnetic flux, leads to considerable limitations of the electro-
magnet energy (W ~n?, and also to a reduction in the current gain (kp~7), and the energy gain (kg ~7%, and
the fraction of the lost flux increases toward the end of the operation of the electromagnet. Increasing the co~
efficient n to the level specified by diffusion of the magnetic field during the compression and displacement of
the flux into the generator load, is one of the main problems in constructing small-size explosive-driven mag-
netic generators with high output characteristies, since the technological factors (e.g., for spiral explosive-
driven magnetic generators, the decentering of the spiral coil from the central tube), which affect the coeffi-
cient 1, may be eliminated or reduced to a minimum. Thus, in [6] certain recommendations are made, con—
firmed experimentally, to achieve this purpose,

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No, 3, pp. 49-58, May~-
June, 1979. Original article submitted June 15, 1978.

0021-8944/79/2003-0297$07,50 ©1979 Plenum Publishing Corporation 297



